aboutsummaryrefslogtreecommitdiffstats
path: root/lib/python2.7/site-packages/SQLAlchemy-0.7.0-py2.7-linux-x86_64.egg/sqlalchemy/ext/declarative.py
blob: 62a1170527a4da8620fcc78f5206b4083d7e021d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
# ext/declarative.py
# Copyright (C) 2005-2011 the SQLAlchemy authors and contributors <see AUTHORS file>
#
# This module is part of SQLAlchemy and is released under
# the MIT License: http://www.opensource.org/licenses/mit-license.php

"""
Synopsis
========

SQLAlchemy object-relational configuration involves the
combination of :class:`.Table`, :func:`.mapper`, and class
objects to define a mapped class.
:mod:`~sqlalchemy.ext.declarative` allows all three to be
expressed at once within the class declaration. As much as
possible, regular SQLAlchemy schema and ORM constructs are
used directly, so that configuration between "classical" ORM
usage and declarative remain highly similar.

As a simple example::

    from sqlalchemy.ext.declarative import declarative_base

    Base = declarative_base()

    class SomeClass(Base):
        __tablename__ = 'some_table'
        id = Column(Integer, primary_key=True)
        name =  Column(String(50))

Above, the :func:`declarative_base` callable returns a new base class from
which all mapped classes should inherit. When the class definition is
completed, a new :class:`.Table` and
:func:`.mapper` will have been generated.

The resulting table and mapper are accessible via
``__table__`` and ``__mapper__`` attributes on the
``SomeClass`` class::

    # access the mapped Table
    SomeClass.__table__

    # access the Mapper
    SomeClass.__mapper__

Defining Attributes
===================

In the previous example, the :class:`.Column` objects are
automatically named with the name of the attribute to which they are
assigned.

To name columns explicitly with a name distinct from their mapped attribute,
just give the column a name.  Below, column "some_table_id" is mapped to the 
"id" attribute of `SomeClass`, but in SQL will be represented as "some_table_id"::

    class SomeClass(Base):
        __tablename__ = 'some_table'
        id = Column("some_table_id", Integer, primary_key=True)

Attributes may be added to the class after its construction, and they will be
added to the underlying :class:`.Table` and
:func:`.mapper()` definitions as appropriate::

    SomeClass.data = Column('data', Unicode)
    SomeClass.related = relationship(RelatedInfo)

Classes which are constructed using declarative can interact freely
with classes that are mapped explicitly with :func:`mapper`.

It is recommended, though not required, that all tables 
share the same underlying :class:`~sqlalchemy.schema.MetaData` object,
so that string-configured :class:`~sqlalchemy.schema.ForeignKey`
references can be resolved without issue.

Accessing the MetaData
=======================

The :func:`declarative_base` base class contains a
:class:`.MetaData` object where newly defined
:class:`.Table` objects are collected. This object is
intended to be accessed directly for
:class:`.MetaData`-specific operations. Such as, to issue
CREATE statements for all tables::

    engine = create_engine('sqlite://')
    Base.metadata.create_all(engine)

The usual techniques of associating :class:`.MetaData:` with :class:`.Engine`
apply, such as assigning to the ``bind`` attribute::

    Base.metadata.bind = create_engine('sqlite://')

To associate the engine with the :func:`declarative_base` at time
of construction, the ``bind`` argument is accepted::

    Base = declarative_base(bind=create_engine('sqlite://'))

:func:`declarative_base` can also receive a pre-existing
:class:`.MetaData` object, which allows a
declarative setup to be associated with an already 
existing traditional collection of :class:`~sqlalchemy.schema.Table`
objects:: 

    mymetadata = MetaData()
    Base = declarative_base(metadata=mymetadata)

Configuring Relationships
=========================

Relationships to other classes are done in the usual way, with the added
feature that the class specified to :func:`~sqlalchemy.orm.relationship`
may be a string name.  The "class registry" associated with ``Base``
is used at mapper compilation time to resolve the name into the actual
class object, which is expected to have been defined once the mapper
configuration is used:: 

    class User(Base):
        __tablename__ = 'users'

        id = Column(Integer, primary_key=True)
        name = Column(String(50))
        addresses = relationship("Address", backref="user")

    class Address(Base):
        __tablename__ = 'addresses'

        id = Column(Integer, primary_key=True)
        email = Column(String(50))
        user_id = Column(Integer, ForeignKey('users.id'))

Column constructs, since they are just that, are immediately usable,
as below where we define a primary join condition on the ``Address``
class using them:: 

    class Address(Base):
        __tablename__ = 'addresses'

        id = Column(Integer, primary_key=True)
        email = Column(String(50))
        user_id = Column(Integer, ForeignKey('users.id'))
        user = relationship(User, primaryjoin=user_id == User.id)

In addition to the main argument for :func:`~sqlalchemy.orm.relationship`,
other arguments which depend upon the columns present on an as-yet
undefined class may also be specified as strings.  These strings are
evaluated as Python expressions.  The full namespace available within
this evaluation includes all classes mapped for this declarative base,
as well as the contents of the ``sqlalchemy`` package, including
expression functions like :func:`~sqlalchemy.sql.expression.desc` and
:attr:`~sqlalchemy.sql.expression.func`:: 

    class User(Base):
        # ....
        addresses = relationship("Address",
                             order_by="desc(Address.email)", 
                             primaryjoin="Address.user_id==User.id")

As an alternative to string-based attributes, attributes may also be 
defined after all classes have been created.  Just add them to the target
class after the fact::

    User.addresses = relationship(Address,
                              primaryjoin=Address.user_id==User.id)

Configuring Many-to-Many Relationships
======================================

Many-to-many relationships are also declared in the same way
with declarative as with traditional mappings. The
``secondary`` argument to
:func:`.relationship` is as usual passed a 
:class:`.Table` object, which is typically declared in the 
traditional way.  The :class:`.Table` usually shares
the :class:`.MetaData` object used by the declarative base::

    keywords = Table(
        'keywords', Base.metadata,
        Column('author_id', Integer, ForeignKey('authors.id')),
        Column('keyword_id', Integer, ForeignKey('keywords.id'))
        )

    class Author(Base):
        __tablename__ = 'authors'
        id = Column(Integer, primary_key=True)
        keywords = relationship("Keyword", secondary=keywords)

As with traditional mapping, its generally not a good idea to use 
a :class:`.Table` as the "secondary" argument which is also mapped to
a class, unless the :class:`.relationship` is declared with ``viewonly=True``.
Otherwise, the unit-of-work system may attempt duplicate INSERT and
DELETE statements against the underlying table.

.. _declarative_sql_expressions:

Defining SQL Expressions
========================

The usage of :func:`.column_property` with Declarative to define
load-time, mapped SQL expressions is
pretty much the same as that described in
:ref:`mapper_sql_expressions`. Local columns within the same
class declaration can be referenced directly::

    class User(Base):
        __tablename__ = 'user'
        id = Column(Integer, primary_key=True)
        firstname = Column(String)
        lastname = Column(String)
        fullname = column_property(
            firstname + " " + lastname
        )

Correlated subqueries reference the :class:`.Column` objects they
need either from the local class definition or from remote 
classes::

    from sqlalchemy.sql import func

    class Address(Base):
        __tablename__ = 'address'

        id = Column('id', Integer, primary_key=True)
        user_id = Column(Integer, ForeignKey('user.id'))

    class User(Base):
        __tablename__ = 'user'

        id = Column(Integer, primary_key=True)
        name = Column(String)

        address_count = column_property(
            select([func.count(Address.id)]).\\
                where(Address.user_id==id)
        )

In the case that the ``address_count`` attribute above doesn't have access to
``Address`` when ``User`` is defined, the ``address_count`` attribute should
be added to ``User`` when both ``User`` and ``Address`` are available (i.e.
there is no string based "late compilation" feature like there is with
:func:`.relationship` at this time). Note we reference the ``id`` column
attribute of ``User`` with its class when we are no longer in the declaration
of the ``User`` class::

    User.address_count = column_property(
        select([func.count(Address.id)]).\\
            where(Address.user_id==User.id)
    ) 

Table Configuration
===================

Table arguments other than the name, metadata, and mapped Column
arguments are specified using the ``__table_args__`` class attribute.
This attribute accommodates both positional as well as keyword
arguments that are normally sent to the
:class:`~sqlalchemy.schema.Table` constructor.
The attribute can be specified in one of two forms. One is as a
dictionary:: 

    class MyClass(Base):
        __tablename__ = 'sometable'
        __table_args__ = {'mysql_engine':'InnoDB'}

The other, a tuple, where each argument is positional
(usually constraints)::

    class MyClass(Base):
        __tablename__ = 'sometable'
        __table_args__ = (
                ForeignKeyConstraint(['id'], ['remote_table.id']),
                UniqueConstraint('foo'),
                )

Keyword arguments can be specified with the above form by 
specifying the last argument as a dictionary::

    class MyClass(Base):
        __tablename__ = 'sometable'
        __table_args__ = (
                ForeignKeyConstraint(['id'], ['remote_table.id']),
                UniqueConstraint('foo'),
                {'autoload':True}
                )

Using a Hybrid Approach with __table__
=======================================

As an alternative to ``__tablename__``, a direct
:class:`~sqlalchemy.schema.Table` construct may be used.  The
:class:`~sqlalchemy.schema.Column` objects, which in this case require
their names, will be added to the mapping just like a regular mapping
to a table:: 

    class MyClass(Base):
        __table__ = Table('my_table', Base.metadata,
            Column('id', Integer, primary_key=True),
            Column('name', String(50))
        )

``__table__`` provides a more focused point of control for establishing
table metadata, while still getting most of the benefits of using declarative.
An application that uses reflection might want to load table metadata elsewhere
and simply pass it to declarative classes::

    from sqlalchemy.ext.declarative import declarative_base

    Base = declarative_base()
    Base.metadata.reflect(some_engine)

    class User(Base):
        __table__ = metadata.tables['user']

    class Address(Base):
        __table__ = metadata.tables['address']

Some configuration schemes may find it more appropriate to use ``__table__``, 
such as those which already take advantage of the data-driven nature of 
:class:`.Table` to customize and/or automate schema definition.   See
the wiki example `NamingConventions <http://www.sqlalchemy.org/trac/wiki/UsageRecipes/NamingConventions>`_
for one such example.

Mapper Configuration
====================

Declarative makes use of the :func:`~.orm.mapper` function internally
when it creates the mapping to the declared table.   The options
for :func:`~.orm.mapper` are passed directly through via the ``__mapper_args__``
class attribute.  As always, arguments which reference locally
mapped columns can reference them directly from within the 
class declaration::

    from datetime import datetime

    class Widget(Base):
        __tablename__ = 'widgets'

        id = Column(Integer, primary_key=True)
        timestamp = Column(DateTime, nullable=False)

        __mapper_args__ = {
                        'version_id_col': timestamp,
                        'version_id_generator': lambda v:datetime.now()
                    }

.. _declarative_inheritance:

Inheritance Configuration
=========================

Declarative supports all three forms of inheritance as intuitively
as possible.  The ``inherits`` mapper keyword argument is not needed
as declarative will determine this from the class itself.   The various
"polymorphic" keyword arguments are specified using ``__mapper_args__``.

Joined Table Inheritance
~~~~~~~~~~~~~~~~~~~~~~~~

Joined table inheritance is defined as a subclass that defines its own 
table::

    class Person(Base):
        __tablename__ = 'people'
        id = Column(Integer, primary_key=True)
        discriminator = Column('type', String(50))
        __mapper_args__ = {'polymorphic_on': discriminator}

    class Engineer(Person):
        __tablename__ = 'engineers'
        __mapper_args__ = {'polymorphic_identity': 'engineer'}
        id = Column(Integer, ForeignKey('people.id'), primary_key=True)
        primary_language = Column(String(50))

Note that above, the ``Engineer.id`` attribute, since it shares the
same attribute name as the ``Person.id`` attribute, will in fact
represent the ``people.id`` and ``engineers.id`` columns together, and
will render inside a query as ``"people.id"``. 
To provide the ``Engineer`` class with an attribute that represents
only the ``engineers.id`` column, give it a different attribute name::

    class Engineer(Person):
        __tablename__ = 'engineers'
        __mapper_args__ = {'polymorphic_identity': 'engineer'}
        engineer_id = Column('id', Integer, ForeignKey('people.id'),
                                                    primary_key=True)
        primary_language = Column(String(50))

Single Table Inheritance
~~~~~~~~~~~~~~~~~~~~~~~~

Single table inheritance is defined as a subclass that does not have
its own table; you just leave out the ``__table__`` and ``__tablename__``
attributes:: 

    class Person(Base):
        __tablename__ = 'people'
        id = Column(Integer, primary_key=True)
        discriminator = Column('type', String(50))
        __mapper_args__ = {'polymorphic_on': discriminator}

    class Engineer(Person):
        __mapper_args__ = {'polymorphic_identity': 'engineer'}
        primary_language = Column(String(50))

When the above mappers are configured, the ``Person`` class is mapped
to the ``people`` table *before* the ``primary_language`` column is
defined, and this column will not be included in its own mapping.
When ``Engineer`` then defines the ``primary_language`` column, the
column is added to the ``people`` table so that it is included in the
mapping for ``Engineer`` and is also part of the table's full set of
columns.  Columns which are not mapped to ``Person`` are also excluded
from any other single or joined inheriting classes using the
``exclude_properties`` mapper argument.  Below, ``Manager`` will have
all the attributes of ``Person`` and ``Manager`` but *not* the
``primary_language`` attribute of ``Engineer``::

    class Manager(Person):
        __mapper_args__ = {'polymorphic_identity': 'manager'}
        golf_swing = Column(String(50))

The attribute exclusion logic is provided by the
``exclude_properties`` mapper argument, and declarative's default
behavior can be disabled by passing an explicit ``exclude_properties``
collection (empty or otherwise) to the ``__mapper_args__``.

Concrete Table Inheritance
~~~~~~~~~~~~~~~~~~~~~~~~~~

Concrete is defined as a subclass which has its own table and sets the
``concrete`` keyword argument to ``True``::

    class Person(Base):
        __tablename__ = 'people'
        id = Column(Integer, primary_key=True)
        name = Column(String(50))

    class Engineer(Person):
        __tablename__ = 'engineers'
        __mapper_args__ = {'concrete':True}
        id = Column(Integer, primary_key=True)
        primary_language = Column(String(50))
        name = Column(String(50))

Usage of an abstract base class is a little less straightforward as it
requires usage of :func:`~sqlalchemy.orm.util.polymorphic_union`::

    engineers = Table('engineers', Base.metadata,
                    Column('id', Integer, primary_key=True),
                    Column('name', String(50)),
                    Column('primary_language', String(50))
                )
    managers = Table('managers', Base.metadata,
                    Column('id', Integer, primary_key=True),
                    Column('name', String(50)),
                    Column('golf_swing', String(50))
                )

    punion = polymorphic_union({
        'engineer':engineers,
        'manager':managers
    }, 'type', 'punion')

    class Person(Base):
        __table__ = punion
        __mapper_args__ = {'polymorphic_on':punion.c.type}

    class Engineer(Person):
        __table__ = engineers
        __mapper_args__ = {'polymorphic_identity':'engineer', 'concrete':True}

    class Manager(Person):
        __table__ = managers
        __mapper_args__ = {'polymorphic_identity':'manager', 'concrete':True}


Mixin Classes
==============

A common need when using :mod:`~sqlalchemy.ext.declarative` is to
share some functionality, often a set of columns, across many
classes. The normal Python idiom would be to put this common code into
a base class and have all the other classes subclass this class.

When using :mod:`~sqlalchemy.ext.declarative`, this need is met by
using a "mixin class". A mixin class is one that isn't mapped to a
table and doesn't subclass the declarative :class:`.Base`. For example::

    class MyMixin(object):

        __table_args__ = {'mysql_engine': 'InnoDB'}
        __mapper_args__= {'always_refresh': True}

        id =  Column(Integer, primary_key=True)


    class MyModel(Base,MyMixin):
        __tablename__ = 'test'

        name = Column(String(1000))

Where above, the class ``MyModel`` will contain an "id" column
as well as ``__table_args__`` and ``__mapper_args__`` defined
by the ``MyMixin`` mixin class.

Mixing in Columns
~~~~~~~~~~~~~~~~~

The most basic way to specify a column on a mixin is by simple 
declaration::

    class TimestampMixin(object):
        created_at = Column(DateTime, default=func.now())

    class MyModel(Base, TimestampMixin):
        __tablename__ = 'test'

        id =  Column(Integer, primary_key=True)
        name = Column(String(1000))

Where above, all declarative classes that include ``TimestampMixin``
will also have a column ``created_at`` that applies a timestamp to 
all row insertions.

Those familiar with the SQLAlchemy expression language know that 
the object identity of clause elements defines their role in a schema.
Two ``Table`` objects ``a`` and ``b`` may both have a column called 
``id``, but the way these are differentiated is that ``a.c.id`` 
and ``b.c.id`` are two distinct Python objects, referencing their
parent tables ``a`` and ``b`` respectively.

In the case of the mixin column, it seems that only one
:class:`.Column` object is explicitly created, yet the ultimate 
``created_at`` column above must exist as a distinct Python object
for each separate destination class.  To accomplish this, the declarative
extension creates a **copy** of each :class:`.Column` object encountered on 
a class that is detected as a mixin.

This copy mechanism is limited to simple columns that have no foreign
keys, as a :class:`.ForeignKey` itself contains references to columns
which can't be properly recreated at this level.  For columns that 
have foreign keys, as well as for the variety of mapper-level constructs
that require destination-explicit context, the
:func:`~.declared_attr` decorator (renamed from ``sqlalchemy.util.classproperty`` in 0.6.5) 
is provided so that
patterns common to many classes can be defined as callables::

    from sqlalchemy.ext.declarative import declared_attr

    class ReferenceAddressMixin(object):
        @declared_attr
        def address_id(cls):
            return Column(Integer, ForeignKey('address.id'))

    class User(Base, ReferenceAddressMixin):
        __tablename__ = 'user'
        id = Column(Integer, primary_key=True)

Where above, the ``address_id`` class-level callable is executed at the 
point at which the ``User`` class is constructed, and the declarative
extension can use the resulting :class:`.Column` object as returned by
the method without the need to copy it.

Columns generated by :func:`~.declared_attr` can also be
referenced by ``__mapper_args__`` to a limited degree, currently 
by ``polymorphic_on`` and ``version_id_col``, by specifying the 
classdecorator itself into the dictionary - the declarative extension
will resolve them at class construction time::

    class MyMixin:
        @declared_attr
        def type_(cls):
            return Column(String(50))

        __mapper_args__= {'polymorphic_on':type_}

    class MyModel(Base,MyMixin):
        __tablename__='test'
        id =  Column(Integer, primary_key=True)

Mixing in Relationships
~~~~~~~~~~~~~~~~~~~~~~~

Relationships created by :func:`~sqlalchemy.orm.relationship` are provided
with declarative mixin classes exclusively using the
:func:`.declared_attr` approach, eliminating any ambiguity
which could arise when copying a relationship and its possibly column-bound
contents. Below is an example which combines a foreign key column and a
relationship so that two classes ``Foo`` and ``Bar`` can both be configured to
reference a common target class via many-to-one::

    class RefTargetMixin(object):
        @declared_attr
        def target_id(cls):
            return Column('target_id', ForeignKey('target.id'))

        @declared_attr
        def target(cls):
            return relationship("Target")

    class Foo(Base, RefTargetMixin):
        __tablename__ = 'foo'
        id = Column(Integer, primary_key=True)

    class Bar(Base, RefTargetMixin):
        __tablename__ = 'bar'
        id = Column(Integer, primary_key=True)

    class Target(Base):
        __tablename__ = 'target'
        id = Column(Integer, primary_key=True)

:func:`~sqlalchemy.orm.relationship` definitions which require explicit
primaryjoin, order_by etc. expressions should use the string forms 
for these arguments, so that they are evaluated as late as possible.
To reference the mixin class in these expressions, use the given ``cls``
to get it's name::

    class RefTargetMixin(object):
        @declared_attr
        def target_id(cls):
            return Column('target_id', ForeignKey('target.id'))

        @declared_attr
        def target(cls):
            return relationship("Target",
                primaryjoin="Target.id==%s.target_id" % cls.__name__
            )

Mixing in deferred(), column_property(), etc.
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Like :func:`~sqlalchemy.orm.relationship`, all
:class:`~sqlalchemy.orm.interfaces.MapperProperty` subclasses such as
:func:`~sqlalchemy.orm.deferred`, :func:`~sqlalchemy.orm.column_property`,
etc. ultimately involve references to columns, and therefore, when 
used with declarative mixins, have the :func:`.declared_attr` 
requirement so that no reliance on copying is needed::

    class SomethingMixin(object):

        @declared_attr
        def dprop(cls):
            return deferred(Column(Integer))

    class Something(Base, SomethingMixin):
        __tablename__ = "something"


Controlling table inheritance with mixins
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

The ``__tablename__`` attribute in conjunction with the hierarchy of
classes involved in a declarative mixin scenario controls what type of 
table inheritance, if any,
is configured by the declarative extension.

If the ``__tablename__`` is computed by a mixin, you may need to
control which classes get the computed attribute in order to get the
type of table inheritance you require.

For example, if you had a mixin that computes ``__tablename__`` but
where you wanted to use that mixin in a single table inheritance
hierarchy, you can explicitly specify ``__tablename__`` as ``None`` to
indicate that the class should not have a table mapped::

    from sqlalchemy.ext.declarative import declared_attr

    class Tablename:
        @declared_attr
        def __tablename__(cls):
            return cls.__name__.lower()

    class Person(Base,Tablename):
        id = Column(Integer, primary_key=True)
        discriminator = Column('type', String(50))
        __mapper_args__ = {'polymorphic_on': discriminator}

    class Engineer(Person):
        __tablename__ = None
        __mapper_args__ = {'polymorphic_identity': 'engineer'}
        primary_language = Column(String(50))

Alternatively, you can make the mixin intelligent enough to only
return a ``__tablename__`` in the event that no table is already
mapped in the inheritance hierarchy. To help with this, a
:func:`~sqlalchemy.ext.declarative.has_inherited_table` helper
function is provided that returns ``True`` if a parent class already
has a mapped table. 

As an example, here's a mixin that will only allow single table
inheritance::

    from sqlalchemy.ext.declarative import declared_attr
    from sqlalchemy.ext.declarative import has_inherited_table

    class Tablename:
        @declared_attr
        def __tablename__(cls):
            if has_inherited_table(cls):
                return None
            return cls.__name__.lower()

    class Person(Base,Tablename):
        id = Column(Integer, primary_key=True)
        discriminator = Column('type', String(50))
        __mapper_args__ = {'polymorphic_on': discriminator}

    class Engineer(Person):
        primary_language = Column(String(50))
        __mapper_args__ = {'polymorphic_identity': 'engineer'}

If you want to use a similar pattern with a mix of single and joined
table inheritance, you would need a slightly different mixin and use
it on any joined table child classes in addition to their parent
classes::

    from sqlalchemy.ext.declarative import declared_attr
    from sqlalchemy.ext.declarative import has_inherited_table

    class Tablename:
        @declared_attr
        def __tablename__(cls):
            if (has_inherited_table(cls) and
                Tablename not in cls.__bases__):
                return None
            return cls.__name__.lower()

    class Person(Base,Tablename):
        id = Column(Integer, primary_key=True)
        discriminator = Column('type', String(50))
        __mapper_args__ = {'polymorphic_on': discriminator}

    # This is single table inheritance
    class Engineer(Person):
        primary_language = Column(String(50))
        __mapper_args__ = {'polymorphic_identity': 'engineer'}

    # This is joined table inheritance
    class Manager(Person,Tablename):
        id = Column(Integer, ForeignKey('person.id'), primary_key=True)
        preferred_recreation = Column(String(50))
        __mapper_args__ = {'polymorphic_identity': 'engineer'}

Combining Table/Mapper Arguments from Multiple Mixins
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

In the case of ``__table_args__`` or ``__mapper_args__``
specified with declarative mixins, you may want to combine
some parameters from several mixins with those you wish to
define on the class iteself. The
:func:`.declared_attr` decorator can be used
here to create user-defined collation routines that pull
from multiple collections::

    from sqlalchemy.ext.declarative import declared_attr

    class MySQLSettings:
        __table_args__ = {'mysql_engine':'InnoDB'}

    class MyOtherMixin:
        __table_args__ = {'info':'foo'}

    class MyModel(Base,MySQLSettings,MyOtherMixin):
        __tablename__='my_model'

        @declared_attr
        def __table_args__(cls):
            args = dict()
            args.update(MySQLSettings.__table_args__)
            args.update(MyOtherMixin.__table_args__)
            return args

        id =  Column(Integer, primary_key=True)

Creating Indexes with Mixins
~~~~~~~~~~~~~~~~~~~~~~~~~~~~

To define a named, potentially multicolumn :class:`.Index` that applies to all 
tables derived from a mixin, use the "inline" form of :class:`.Index` and establish
it as part of ``__table_args__``::

    class MyMixin(object):
        a =  Column(Integer)
        b =  Column(Integer)

        @declared_attr
        def __table_args__(cls):
            return (Index('test_idx_%s' % cls.__tablename__, 'a', 'b'),)

    class MyModel(Base,MyMixin):
        __tablename__ = 'atable'
        c =  Column(Integer,primary_key=True)


Class Constructor
=================

As a convenience feature, the :func:`declarative_base` sets a default
constructor on classes which takes keyword arguments, and assigns them
to the named attributes::

    e = Engineer(primary_language='python')

Sessions
========

Note that ``declarative`` does nothing special with sessions, and is
only intended as an easier way to configure mappers and
:class:`~sqlalchemy.schema.Table` objects.  A typical application
setup using :func:`~sqlalchemy.orm.scoped_session` might look like::

    engine = create_engine('postgresql://scott:tiger@localhost/test')
    Session = scoped_session(sessionmaker(autocommit=False,
                                          autoflush=False,
                                          bind=engine))
    Base = declarative_base()

Mapped instances then make usage of
:class:`~sqlalchemy.orm.session.Session` in the usual way. 

"""

from sqlalchemy.schema import Table, Column, MetaData, _get_table_key
from sqlalchemy.orm import synonym as _orm_synonym, mapper,\
                                comparable_property, class_mapper
from sqlalchemy.orm.interfaces import MapperProperty
from sqlalchemy.orm.properties import RelationshipProperty, ColumnProperty, CompositeProperty
from sqlalchemy.orm.util import _is_mapped_class
from sqlalchemy import util, exc
from sqlalchemy.sql import util as sql_util, expression


__all__ = 'declarative_base', 'synonym_for', \
            'comparable_using', 'instrument_declarative'

def instrument_declarative(cls, registry, metadata):
    """Given a class, configure the class declaratively,
    using the given registry, which can be any dictionary, and
    MetaData object. 

    """
    if '_decl_class_registry' in cls.__dict__:
        raise exc.InvalidRequestError(
                            "Class %r already has been "
                            "instrumented declaratively" % cls)
    cls._decl_class_registry = registry
    cls.metadata = metadata
    _as_declarative(cls, cls.__name__, cls.__dict__)

def has_inherited_table(cls):
    """Given a class, return True if any of the classes it inherits from has a
    mapped table, otherwise return False.
    """
    for class_ in cls.__mro__:
        if getattr(class_,'__table__',None) is not None:
            return True
    return False

def _as_declarative(cls, classname, dict_):

    # dict_ will be a dictproxy, which we can't write to, and we need to!
    dict_ = dict(dict_)

    column_copies = {}
    potential_columns = {}

    mapper_args = {}
    table_args = inherited_table_args = None
    tablename = None
    parent_columns = ()

    declarative_props = (declared_attr, util.classproperty)

    for base in cls.__mro__:
        class_mapped = _is_mapped_class(base)
        if class_mapped:
            parent_columns = base.__table__.c.keys()

        for name,obj in vars(base).items():
            if name == '__mapper_args__':
                if not mapper_args and (
                                        not class_mapped or 
                                        isinstance(obj, declarative_props)
                                    ):
                    mapper_args = cls.__mapper_args__
            elif name == '__tablename__':
                if not tablename and (
                                        not class_mapped or 
                                        isinstance(obj, declarative_props)
                                    ):
                    tablename = cls.__tablename__
            elif name == '__table_args__':
                if not table_args and (
                                        not class_mapped or 
                                        isinstance(obj, declarative_props)
                                    ):
                    table_args = cls.__table_args__
                    if not isinstance(table_args, (tuple, dict, type(None))):
                        raise exc.ArgumentError(
                                "__table_args__ value must be a tuple, "
                                "dict, or None")
                    if base is not cls:
                        inherited_table_args = True
            elif class_mapped:
                continue
            elif base is not cls:
                # we're a mixin.

                if isinstance(obj, Column):
                    if obj.foreign_keys:
                        raise exc.InvalidRequestError(
                        "Columns with foreign keys to other columns "
                        "must be declared as @declared_attr callables "
                        "on declarative mixin classes. ")
                    if name not in dict_ and not (
                            '__table__' in dict_ and 
                            (obj.name or name) in dict_['__table__'].c
                            ) and name not in potential_columns:
                        potential_columns[name] = \
                                column_copies[obj] = \
                                obj.copy()
                        column_copies[obj]._creation_order = \
                                obj._creation_order
                elif isinstance(obj, MapperProperty):
                    raise exc.InvalidRequestError(
                        "Mapper properties (i.e. deferred,"
                        "column_property(), relationship(), etc.) must "
                        "be declared as @declared_attr callables "
                        "on declarative mixin classes.")
                elif isinstance(obj, declarative_props):
                    dict_[name] = ret = \
                            column_copies[obj] = getattr(cls, name)
                    if isinstance(ret, (Column, MapperProperty)) and \
                        ret.doc is None:
                        ret.doc = obj.__doc__

    # apply inherited columns as we should
    for k, v in potential_columns.items():
        if tablename or (v.name or k) not in parent_columns:
            dict_[k] = v

    if inherited_table_args and not tablename:
        table_args = None

    # make sure that column copies are used rather 
    # than the original columns from any mixins
    for k in ('version_id_col', 'polymorphic_on',):
        if k in mapper_args:
            v = mapper_args[k]
            mapper_args[k] = column_copies.get(v,v)

    if classname in cls._decl_class_registry:
        util.warn("The classname %r is already in the registry of this"
                  " declarative base, mapped to %r" % (
                classname,
                cls._decl_class_registry[classname]
                ))
    cls._decl_class_registry[classname] = cls
    our_stuff = util.OrderedDict()

    for k in dict_:
        value = dict_[k]
        if isinstance(value, declarative_props):
            value = getattr(cls, k)

        if (isinstance(value, tuple) and len(value) == 1 and
            isinstance(value[0], (Column, MapperProperty))):
            util.warn("Ignoring declarative-like tuple value of attribute "
                      "%s: possibly a copy-and-paste error with a comma "
                      "left at the end of the line?" % k)
            continue
        if not isinstance(value, (Column, MapperProperty)):
            continue
        if k == 'metadata':
            raise exc.InvalidRequestError(
                "Attribute name 'metadata' is reserved "
                "for the MetaData instance when using a "
                "declarative base class."
            )
        prop = _deferred_relationship(cls, value)
        our_stuff[k] = prop

    # set up attributes in the order they were created
    our_stuff.sort(key=lambda key: our_stuff[key]._creation_order)

    # extract columns from the class dict
    cols = set()
    for key, c in our_stuff.iteritems():
        if isinstance(c, (ColumnProperty, CompositeProperty)):
            for col in c.columns:
                if isinstance(col, Column) and \
                    col.table is None:
                    _undefer_column_name(key, col)
                    cols.add(col)
        elif isinstance(c, Column):
            _undefer_column_name(key, c)
            cols.add(c)
            # if the column is the same name as the key, 
            # remove it from the explicit properties dict.
            # the normal rules for assigning column-based properties
            # will take over, including precedence of columns
            # in multi-column ColumnProperties.
            if key == c.key:
                del our_stuff[key]
    cols = sorted(cols, key=lambda c:c._creation_order)

    table = None
    if '__table__' not in dict_:
        if tablename is not None:

            if isinstance(table_args, dict):
                args, table_kw = (), table_args
            elif isinstance(table_args, tuple):
                if isinstance(table_args[-1], dict):
                    args, table_kw = table_args[0:-1], table_args[-1]
                else:
                    args, table_kw = table_args, {}
            else:
                args, table_kw = (), {}

            autoload = dict_.get('__autoload__')
            if autoload:
                table_kw['autoload'] = True

            cls.__table__ = table = Table(tablename, cls.metadata,
                                          *(tuple(cols) + tuple(args)),
                                           **table_kw)
    else:
        table = cls.__table__
        if cols:
            for c in cols:
                if not table.c.contains_column(c):
                    raise exc.ArgumentError(
                        "Can't add additional column %r when "
                        "specifying __table__" % c.key
                    )

    if 'inherits' not in mapper_args:
        for c in cls.__bases__:
            if _is_mapped_class(c):
                mapper_args['inherits'] = cls._decl_class_registry.get(
                                                            c.__name__, None)
                break

    if hasattr(cls, '__mapper_cls__'):
        mapper_cls = util.unbound_method_to_callable(cls.__mapper_cls__)
    else:
        mapper_cls = mapper

    if table is None and 'inherits' not in mapper_args:
        raise exc.InvalidRequestError(
            "Class %r does not have a __table__ or __tablename__ "
            "specified and does not inherit from an existing "
            "table-mapped class." % cls
            )

    elif 'inherits' in mapper_args and not mapper_args.get('concrete', False):
        inherited_mapper = class_mapper(mapper_args['inherits'],
                                            compile=False)
        inherited_table = inherited_mapper.local_table

        if table is None:
            # single table inheritance.
            # ensure no table args
            if table_args:
                raise exc.ArgumentError(
                    "Can't place __table_args__ on an inherited class "
                    "with no table."
                    )

            # add any columns declared here to the inherited table.
            for c in cols:
                if c.primary_key:
                    raise exc.ArgumentError(
                        "Can't place primary key columns on an inherited "
                        "class with no table."
                        )
                if c.name in inherited_table.c:
                    raise exc.ArgumentError(
                        "Column '%s' on class %s conflicts with "
                        "existing column '%s'" % 
                        (c, cls, inherited_table.c[c.name])
                    )
                inherited_table.append_column(c)

        # single or joined inheritance
        # exclude any cols on the inherited table which are not mapped on the
        # parent class, to avoid
        # mapping columns specific to sibling/nephew classes
        inherited_mapper = class_mapper(mapper_args['inherits'],
                                            compile=False)
        inherited_table = inherited_mapper.local_table

        if 'exclude_properties' not in mapper_args:
            mapper_args['exclude_properties'] = exclude_properties = \
                set([c.key for c in inherited_table.c
                     if c not in inherited_mapper._columntoproperty])
            exclude_properties.difference_update([c.key for c in cols])

        # look through columns in the current mapper that 
        # are keyed to a propname different than the colname
        # (if names were the same, we'd have popped it out above,
        # in which case the mapper makes this combination).
        # See if the superclass has a similar column property.
        # If so, join them together.
        for k, col in our_stuff.items():
            if not isinstance(col, expression.ColumnElement):
                continue
            if k in inherited_mapper._props:
                p = inherited_mapper._props[k]
                if isinstance(p, ColumnProperty):
                    # note here we place the superclass column
                    # first.  this corresponds to the 
                    # append() in mapper._configure_property().
                    # change this ordering when we do [ticket:1892]
                    our_stuff[k] = p.columns + [col]


    cls.__mapper__ = mapper_cls(cls, 
                                table, 
                                properties=our_stuff, 
                                **mapper_args)

class DeclarativeMeta(type):
    def __init__(cls, classname, bases, dict_):
        if '_decl_class_registry' in cls.__dict__:
            return type.__init__(cls, classname, bases, dict_)

        _as_declarative(cls, classname, cls.__dict__)
        return type.__init__(cls, classname, bases, dict_)

    def __setattr__(cls, key, value):
        if '__mapper__' in cls.__dict__:
            if isinstance(value, Column):
                _undefer_column_name(key, value)
                cls.__table__.append_column(value)
                cls.__mapper__.add_property(key, value)
            elif isinstance(value, ColumnProperty):
                for col in value.columns:
                    if isinstance(col, Column) and col.table is None:
                        _undefer_column_name(key, col)
                        cls.__table__.append_column(col)
                cls.__mapper__.add_property(key, value)
            elif isinstance(value, MapperProperty):
                cls.__mapper__.add_property(
                                        key, 
                                        _deferred_relationship(cls, value)
                                )
            else:
                type.__setattr__(cls, key, value)
        else:
            type.__setattr__(cls, key, value)


class _GetColumns(object):
    def __init__(self, cls):
        self.cls = cls

    def __getattr__(self, key):
        mapper = class_mapper(self.cls, compile=False)
        if mapper:
            if not mapper.has_property(key):
                raise exc.InvalidRequestError(
                            "Class %r does not have a mapped column named %r"
                            % (self.cls, key))

            prop = mapper.get_property(key)
            if not isinstance(prop, ColumnProperty):
                raise exc.InvalidRequestError(
                            "Property %r is not an instance of"
                            " ColumnProperty (i.e. does not correspond"
                            " directly to a Column)." % key)
        return getattr(self.cls, key)

class _GetTable(object):
    def __init__(self, key, metadata):
        self.key = key
        self.metadata = metadata

    def __getattr__(self, key):
        return self.metadata.tables[
                _get_table_key(key, self.key)
            ]

def _deferred_relationship(cls, prop):
    def resolve_arg(arg):
        import sqlalchemy

        def access_cls(key):
            if key in cls._decl_class_registry:
                return _GetColumns(cls._decl_class_registry[key])
            elif key in cls.metadata.tables:
                return cls.metadata.tables[key]
            elif key in cls.metadata._schemas:
                return _GetTable(key, cls.metadata)
            else:
                return sqlalchemy.__dict__[key]

        d = util.PopulateDict(access_cls)
        def return_cls():
            try:
                x = eval(arg, globals(), d)

                if isinstance(x, _GetColumns):
                    return x.cls
                else:
                    return x
            except NameError, n:
                raise exc.InvalidRequestError(
                    "When initializing mapper %s, expression %r failed to "
                    "locate a name (%r). If this is a class name, consider "
                    "adding this relationship() to the %r class after "
                    "both dependent classes have been defined." % 
                    (prop.parent, arg, n.args[0], cls)
                )
        return return_cls

    if isinstance(prop, RelationshipProperty):
        for attr in ('argument', 'order_by', 'primaryjoin', 'secondaryjoin',
                     'secondary', '_user_defined_foreign_keys', 'remote_side'):
            v = getattr(prop, attr)
            if isinstance(v, basestring):
                setattr(prop, attr, resolve_arg(v))

        if prop.backref and isinstance(prop.backref, tuple):
            key, kwargs = prop.backref
            for attr in ('primaryjoin', 'secondaryjoin', 'secondary',
                         'foreign_keys', 'remote_side', 'order_by'):
               if attr in kwargs and isinstance(kwargs[attr], basestring):
                   kwargs[attr] = resolve_arg(kwargs[attr])


    return prop

def synonym_for(name, map_column=False):
    """Decorator, make a Python @property a query synonym for a column.

    A decorator version of :func:`~sqlalchemy.orm.synonym`. The function being
    decorated is the 'descriptor', otherwise passes its arguments through to
    synonym()::

      @synonym_for('col')
      @property
      def prop(self):
          return 'special sauce'

    The regular ``synonym()`` is also usable directly in a declarative setting
    and may be convenient for read/write properties::

      prop = synonym('col', descriptor=property(_read_prop, _write_prop))

    """
    def decorate(fn):
        return _orm_synonym(name, map_column=map_column, descriptor=fn)
    return decorate

def comparable_using(comparator_factory):
    """Decorator, allow a Python @property to be used in query criteria.

    This is a  decorator front end to
    :func:`~sqlalchemy.orm.comparable_property` that passes
    through the comparator_factory and the function being decorated::

      @comparable_using(MyComparatorType)
      @property
      def prop(self):
          return 'special sauce'

    The regular ``comparable_property()`` is also usable directly in a
    declarative setting and may be convenient for read/write properties::

      prop = comparable_property(MyComparatorType)

    """
    def decorate(fn):
        return comparable_property(comparator_factory, fn)
    return decorate

class declared_attr(property):
    """Mark a class-level method as representing the definition of
    a mapped property or special declarative member name.

    .. note:: @declared_attr is available as 
      ``sqlalchemy.util.classproperty`` for SQLAlchemy versions
      0.6.2, 0.6.3, 0.6.4.

    @declared_attr turns the attribute into a scalar-like
    property that can be invoked from the uninstantiated class.
    Declarative treats attributes specifically marked with 
    @declared_attr as returning a construct that is specific
    to mapping or declarative table configuration.  The name
    of the attribute is that of what the non-dynamic version
    of the attribute would be.

    @declared_attr is more often than not applicable to mixins,
    to define relationships that are to be applied to different
    implementors of the class::

        class ProvidesUser(object):
            "A mixin that adds a 'user' relationship to classes."

            @declared_attr
            def user(self):
                return relationship("User")

    It also can be applied to mapped classes, such as to provide
    a "polymorphic" scheme for inheritance::

        class Employee(Base):
            id = Column(Integer, primary_key=True)
            type = Column(String(50), nullable=False)

            @declared_attr
            def __tablename__(cls):
                return cls.__name__.lower()

            @declared_attr
            def __mapper_args__(cls):
                if cls.__name__ == 'Employee':
                    return {
                            "polymorphic_on":cls.type, 
                            "polymorphic_identity":"Employee"
                    }
                else:
                    return {"polymorphic_identity":cls.__name__}

    """

    def __init__(self, fget, *arg, **kw):
        super(declared_attr, self).__init__(fget, *arg, **kw)
        self.__doc__ = fget.__doc__

    def __get__(desc, self, cls):
        return desc.fget(cls)

def _declarative_constructor(self, **kwargs):
    """A simple constructor that allows initialization from kwargs.

    Sets attributes on the constructed instance using the names and
    values in ``kwargs``.

    Only keys that are present as
    attributes of the instance's class are allowed. These could be,
    for example, any mapped columns or relationships.
    """
    cls_ = type(self)
    for k in kwargs:
        if not hasattr(cls_, k):
            raise TypeError(
                "%r is an invalid keyword argument for %s" %
                (k, cls_.__name__))
        setattr(self, k, kwargs[k])
_declarative_constructor.__name__ = '__init__'

def declarative_base(bind=None, metadata=None, mapper=None, cls=object,
                     name='Base', constructor=_declarative_constructor,
                     metaclass=DeclarativeMeta):
    """Construct a base class for declarative class definitions.

    The new base class will be given a metaclass that produces
    appropriate :class:`~sqlalchemy.schema.Table` objects and makes
    the appropriate :func:`~sqlalchemy.orm.mapper` calls based on the
    information provided declaratively in the class and any subclasses
    of the class.

    :param bind: An optional
      :class:`~sqlalchemy.engine.base.Connectable`, will be assigned
      the ``bind`` attribute on the :class:`~sqlalchemy.MetaData` 
      instance. 

    :param metadata:
      An optional :class:`~sqlalchemy.MetaData` instance.  All
      :class:`~sqlalchemy.schema.Table` objects implicitly declared by
      subclasses of the base will share this MetaData.  A MetaData instance
      will be created if none is provided.  The
      :class:`~sqlalchemy.MetaData` instance will be available via the
      `metadata` attribute of the generated declarative base class.

    :param mapper:
      An optional callable, defaults to :func:`~sqlalchemy.orm.mapper`. Will
      be used to map subclasses to their Tables.

    :param cls:
      Defaults to :class:`object`. A type to use as the base for the generated
      declarative base class. May be a class or tuple of classes.

    :param name:
      Defaults to ``Base``.  The display name for the generated
      class.  Customizing this is not required, but can improve clarity in
      tracebacks and debugging.

    :param constructor:
      Defaults to
      :func:`~sqlalchemy.ext.declarative._declarative_constructor`, an
      __init__ implementation that assigns \**kwargs for declared
      fields and relationships to an instance.  If ``None`` is supplied,
      no __init__ will be provided and construction will fall back to
      cls.__init__ by way of the normal Python semantics.

    :param metaclass:
      Defaults to :class:`.DeclarativeMeta`.  A metaclass or __metaclass__
      compatible callable to use as the meta type of the generated
      declarative base class.

    """
    lcl_metadata = metadata or MetaData()
    if bind:
        lcl_metadata.bind = bind

    bases = not isinstance(cls, tuple) and (cls,) or cls
    class_dict = dict(_decl_class_registry=dict(),
                      metadata=lcl_metadata)

    if constructor:
        class_dict['__init__'] = constructor
    if mapper:
        class_dict['__mapper_cls__'] = mapper

    return metaclass(name, bases, class_dict)

def _undefer_column_name(key, column):
    if column.key is None:
        column.key = key
    if column.name is None:
        column.name = key