aboutsummaryrefslogtreecommitdiffstats
path: root/lib/python2.7/site-packages/Twisted-12.2.0-py2.7-linux-x86_64.egg/twisted/internet/protocol.py
blob: 094a535a78e6155901c1dc2af3f7318785266c43 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
# -*- test-case-name: twisted.test.test_factories,twisted.internet.test.test_protocol -*-
# Copyright (c) Twisted Matrix Laboratories.
# See LICENSE for details.

"""
Standard implementations of Twisted protocol-related interfaces.

Start here if you are looking to write a new protocol implementation for
Twisted.  The Protocol class contains some introductory material.

Maintainer: Itamar Shtull-Trauring
"""

import random
from zope.interface import implements

# Twisted Imports
from twisted.python import log, failure, components
from twisted.internet import interfaces, error, defer


class Factory:
    """
    This is a factory which produces protocols.

    By default, buildProtocol will create a protocol of the class given in
    self.protocol.
    """

    implements(interfaces.IProtocolFactory, interfaces.ILoggingContext)

    # put a subclass of Protocol here:
    protocol = None

    numPorts = 0
    noisy = True

    def logPrefix(self):
        """
        Describe this factory for log messages.
        """
        return self.__class__.__name__


    def doStart(self):
        """Make sure startFactory is called.

        Users should not call this function themselves!
        """
        if not self.numPorts:
            if self.noisy:
                log.msg("Starting factory %r" % self)
            self.startFactory()
        self.numPorts = self.numPorts + 1

    def doStop(self):
        """Make sure stopFactory is called.

        Users should not call this function themselves!
        """
        if self.numPorts == 0:
            # this shouldn't happen, but does sometimes and this is better
            # than blowing up in assert as we did previously.
            return
        self.numPorts = self.numPorts - 1
        if not self.numPorts:
            if self.noisy:
                log.msg("Stopping factory %r" % self)
            self.stopFactory()

    def startFactory(self):
        """This will be called before I begin listening on a Port or Connector.

        It will only be called once, even if the factory is connected
        to multiple ports.

        This can be used to perform 'unserialization' tasks that
        are best put off until things are actually running, such
        as connecting to a database, opening files, etcetera.
        """

    def stopFactory(self):
        """This will be called before I stop listening on all Ports/Connectors.

        This can be overridden to perform 'shutdown' tasks such as disconnecting
        database connections, closing files, etc.

        It will be called, for example, before an application shuts down,
        if it was connected to a port. User code should not call this function
        directly.
        """

    def buildProtocol(self, addr):
        """Create an instance of a subclass of Protocol.

        The returned instance will handle input on an incoming server
        connection, and an attribute \"factory\" pointing to the creating
        factory.

        Override this method to alter how Protocol instances get created.

        @param addr: an object implementing L{twisted.internet.interfaces.IAddress}
        """
        p = self.protocol()
        p.factory = self
        return p


class ClientFactory(Factory):
    """A Protocol factory for clients.

    This can be used together with the various connectXXX methods in
    reactors.
    """

    def startedConnecting(self, connector):
        """Called when a connection has been started.

        You can call connector.stopConnecting() to stop the connection attempt.

        @param connector: a Connector object.
        """

    def clientConnectionFailed(self, connector, reason):
        """Called when a connection has failed to connect.

        It may be useful to call connector.connect() - this will reconnect.

        @type reason: L{twisted.python.failure.Failure}
        """

    def clientConnectionLost(self, connector, reason):
        """Called when an established connection is lost.

        It may be useful to call connector.connect() - this will reconnect.

        @type reason: L{twisted.python.failure.Failure}
        """


class _InstanceFactory(ClientFactory):
    """
    Factory used by ClientCreator.

    @ivar deferred: The L{Deferred} which represents this connection attempt and
        which will be fired when it succeeds or fails.

    @ivar pending: After a connection attempt succeeds or fails, a delayed call
        which will fire the L{Deferred} representing this connection attempt.
    """

    noisy = False
    pending = None

    def __init__(self, reactor, instance, deferred):
        self.reactor = reactor
        self.instance = instance
        self.deferred = deferred


    def __repr__(self):
        return "<ClientCreator factory: %r>" % (self.instance, )


    def buildProtocol(self, addr):
        """
        Return the pre-constructed protocol instance and arrange to fire the
        waiting L{Deferred} to indicate success establishing the connection.
        """
        self.pending = self.reactor.callLater(
            0, self.fire, self.deferred.callback, self.instance)
        self.deferred = None
        return self.instance


    def clientConnectionFailed(self, connector, reason):
        """
        Arrange to fire the waiting L{Deferred} with the given failure to
        indicate the connection could not be established.
        """
        self.pending = self.reactor.callLater(
            0, self.fire, self.deferred.errback, reason)
        self.deferred = None


    def fire(self, func, value):
        """
        Clear C{self.pending} to avoid a reference cycle and then invoke func
        with the value.
        """
        self.pending = None
        func(value)



class ClientCreator:
    """
    Client connections that do not require a factory.

    The various connect* methods create a protocol instance using the given
    protocol class and arguments, and connect it, returning a Deferred of the
    resulting protocol instance.

    Useful for cases when we don't really need a factory.  Mainly this
    is when there is no shared state between protocol instances, and no need
    to reconnect.

    The C{connectTCP}, C{connectUNIX}, and C{connectSSL} methods each return a
    L{Deferred} which will fire with an instance of the protocol class passed to
    L{ClientCreator.__init__}.  These Deferred can be cancelled to abort the
    connection attempt (in a very unlikely case, cancelling the Deferred may not
    prevent the protocol from being instantiated and connected to a transport;
    if this happens, it will be disconnected immediately afterwards and the
    Deferred will still errback with L{CancelledError}).
    """

    def __init__(self, reactor, protocolClass, *args, **kwargs):
        self.reactor = reactor
        self.protocolClass = protocolClass
        self.args = args
        self.kwargs = kwargs


    def _connect(self, method, *args, **kwargs):
        """
        Initiate a connection attempt.

        @param method: A callable which will actually start the connection
            attempt.  For example, C{reactor.connectTCP}.

        @param *args: Positional arguments to pass to C{method}, excluding the
            factory.

        @param **kwargs: Keyword arguments to pass to C{method}.

        @return: A L{Deferred} which fires with an instance of the protocol
            class passed to this L{ClientCreator}'s initializer or fails if the
            connection cannot be set up for some reason.
        """
        def cancelConnect(deferred):
            connector.disconnect()
            if f.pending is not None:
                f.pending.cancel()
        d = defer.Deferred(cancelConnect)
        f = _InstanceFactory(
            self.reactor, self.protocolClass(*self.args, **self.kwargs), d)
        connector = method(factory=f, *args, **kwargs)
        return d


    def connectTCP(self, host, port, timeout=30, bindAddress=None):
        """
        Connect to a TCP server.

        The parameters are all the same as to L{IReactorTCP.connectTCP} except
        that the factory parameter is omitted.

        @return: A L{Deferred} which fires with an instance of the protocol
            class passed to this L{ClientCreator}'s initializer or fails if the
            connection cannot be set up for some reason.
        """
        return self._connect(
            self.reactor.connectTCP, host, port, timeout=timeout,
            bindAddress=bindAddress)


    def connectUNIX(self, address, timeout=30, checkPID=False):
        """
        Connect to a Unix socket.

        The parameters are all the same as to L{IReactorUNIX.connectUNIX} except
        that the factory parameter is omitted.

        @return: A L{Deferred} which fires with an instance of the protocol
            class passed to this L{ClientCreator}'s initializer or fails if the
            connection cannot be set up for some reason.
        """
        return self._connect(
            self.reactor.connectUNIX, address, timeout=timeout,
            checkPID=checkPID)


    def connectSSL(self, host, port, contextFactory, timeout=30, bindAddress=None):
        """
        Connect to an SSL server.

        The parameters are all the same as to L{IReactorSSL.connectSSL} except
        that the factory parameter is omitted.

        @return: A L{Deferred} which fires with an instance of the protocol
            class passed to this L{ClientCreator}'s initializer or fails if the
            connection cannot be set up for some reason.
        """
        return self._connect(
            self.reactor.connectSSL, host, port,
            contextFactory=contextFactory, timeout=timeout,
            bindAddress=bindAddress)



class ReconnectingClientFactory(ClientFactory):
    """
    Factory which auto-reconnects clients with an exponential back-off.

    Note that clients should call my resetDelay method after they have
    connected successfully.

    @ivar maxDelay: Maximum number of seconds between connection attempts.
    @ivar initialDelay: Delay for the first reconnection attempt.
    @ivar factor: A multiplicitive factor by which the delay grows
    @ivar jitter: Percentage of randomness to introduce into the delay length
        to prevent stampeding.
    @ivar clock: The clock used to schedule reconnection. It's mainly useful to
        be parametrized in tests. If the factory is serialized, this attribute
        will not be serialized, and the default value (the reactor) will be
        restored when deserialized.
    @type clock: L{IReactorTime}
    @ivar maxRetries: Maximum number of consecutive unsuccessful connection
        attempts, after which no further connection attempts will be made. If
        this is not explicitly set, no maximum is applied.
    """
    maxDelay = 3600
    initialDelay = 1.0
    # Note: These highly sensitive factors have been precisely measured by
    # the National Institute of Science and Technology.  Take extreme care
    # in altering them, or you may damage your Internet!
    # (Seriously: <http://physics.nist.gov/cuu/Constants/index.html>)
    factor = 2.7182818284590451 # (math.e)
    # Phi = 1.6180339887498948 # (Phi is acceptable for use as a
    # factor if e is too large for your application.)
    jitter = 0.11962656472 # molar Planck constant times c, joule meter/mole

    delay = initialDelay
    retries = 0
    maxRetries = None
    _callID = None
    connector = None
    clock = None

    continueTrying = 1


    def clientConnectionFailed(self, connector, reason):
        if self.continueTrying:
            self.connector = connector
            self.retry()


    def clientConnectionLost(self, connector, unused_reason):
        if self.continueTrying:
            self.connector = connector
            self.retry()


    def retry(self, connector=None):
        """
        Have this connector connect again, after a suitable delay.
        """
        if not self.continueTrying:
            if self.noisy:
                log.msg("Abandoning %s on explicit request" % (connector,))
            return

        if connector is None:
            if self.connector is None:
                raise ValueError("no connector to retry")
            else:
                connector = self.connector

        self.retries += 1
        if self.maxRetries is not None and (self.retries > self.maxRetries):
            if self.noisy:
                log.msg("Abandoning %s after %d retries." %
                        (connector, self.retries))
            return

        self.delay = min(self.delay * self.factor, self.maxDelay)
        if self.jitter:
            self.delay = random.normalvariate(self.delay,
                                              self.delay * self.jitter)

        if self.noisy:
            log.msg("%s will retry in %d seconds" % (connector, self.delay,))

        def reconnector():
            self._callID = None
            connector.connect()
        if self.clock is None:
            from twisted.internet import reactor
            self.clock = reactor
        self._callID = self.clock.callLater(self.delay, reconnector)


    def stopTrying(self):
        """
        Put a stop to any attempt to reconnect in progress.
        """
        # ??? Is this function really stopFactory?
        if self._callID:
            self._callID.cancel()
            self._callID = None
        self.continueTrying = 0
        if self.connector:
            try:
                self.connector.stopConnecting()
            except error.NotConnectingError:
                pass


    def resetDelay(self):
        """
        Call this method after a successful connection: it resets the delay and
        the retry counter.
        """
        self.delay = self.initialDelay
        self.retries = 0
        self._callID = None
        self.continueTrying = 1


    def __getstate__(self):
        """
        Remove all of the state which is mutated by connection attempts and
        failures, returning just the state which describes how reconnections
        should be attempted.  This will make the unserialized instance
        behave just as this one did when it was first instantiated.
        """
        state = self.__dict__.copy()
        for key in ['connector', 'retries', 'delay',
                    'continueTrying', '_callID', 'clock']:
            if key in state:
                del state[key]
        return state



class ServerFactory(Factory):
    """Subclass this to indicate that your protocol.Factory is only usable for servers.
    """



class BaseProtocol:
    """
    This is the abstract superclass of all protocols.

    Some methods have helpful default implementations here so that they can
    easily be shared, but otherwise the direct subclasses of this class are more
    interesting, L{Protocol} and L{ProcessProtocol}.
    """
    connected = 0
    transport = None

    def makeConnection(self, transport):
        """Make a connection to a transport and a server.

        This sets the 'transport' attribute of this Protocol, and calls the
        connectionMade() callback.
        """
        self.connected = 1
        self.transport = transport
        self.connectionMade()

    def connectionMade(self):
        """Called when a connection is made.

        This may be considered the initializer of the protocol, because
        it is called when the connection is completed.  For clients,
        this is called once the connection to the server has been
        established; for servers, this is called after an accept() call
        stops blocking and a socket has been received.  If you need to
        send any greeting or initial message, do it here.
        """

connectionDone=failure.Failure(error.ConnectionDone())
connectionDone.cleanFailure()


class Protocol(BaseProtocol):
    """
    This is the base class for streaming connection-oriented protocols.

    If you are going to write a new connection-oriented protocol for Twisted,
    start here.  Any protocol implementation, either client or server, should
    be a subclass of this class.

    The API is quite simple.  Implement L{dataReceived} to handle both
    event-based and synchronous input; output can be sent through the
    'transport' attribute, which is to be an instance that implements
    L{twisted.internet.interfaces.ITransport}.  Override C{connectionLost} to be
    notified when the connection ends.

    Some subclasses exist already to help you write common types of protocols:
    see the L{twisted.protocols.basic} module for a few of them.
    """
    implements(interfaces.IProtocol, interfaces.ILoggingContext)

    def logPrefix(self):
        """
        Return a prefix matching the class name, to identify log messages
        related to this protocol instance.
        """
        return self.__class__.__name__


    def dataReceived(self, data):
        """Called whenever data is received.

        Use this method to translate to a higher-level message.  Usually, some
        callback will be made upon the receipt of each complete protocol
        message.

        @param data: a string of indeterminate length.  Please keep in mind
            that you will probably need to buffer some data, as partial
            (or multiple) protocol messages may be received!  I recommend
            that unit tests for protocols call through to this method with
            differing chunk sizes, down to one byte at a time.
        """

    def connectionLost(self, reason=connectionDone):
        """Called when the connection is shut down.

        Clear any circular references here, and any external references
        to this Protocol.  The connection has been closed.

        @type reason: L{twisted.python.failure.Failure}
        """


class ProtocolToConsumerAdapter(components.Adapter):
    implements(interfaces.IConsumer)

    def write(self, data):
        self.original.dataReceived(data)

    def registerProducer(self, producer, streaming):
        pass

    def unregisterProducer(self):
        pass

components.registerAdapter(ProtocolToConsumerAdapter, interfaces.IProtocol,
                           interfaces.IConsumer)

class ConsumerToProtocolAdapter(components.Adapter):
    implements(interfaces.IProtocol)

    def dataReceived(self, data):
        self.original.write(data)

    def connectionLost(self, reason):
        pass

    def makeConnection(self, transport):
        pass

    def connectionMade(self):
        pass

components.registerAdapter(ConsumerToProtocolAdapter, interfaces.IConsumer,
                           interfaces.IProtocol)

class ProcessProtocol(BaseProtocol):
    """
    Base process protocol implementation which does simple dispatching for
    stdin, stdout, and stderr file descriptors.
    """
    implements(interfaces.IProcessProtocol)

    def childDataReceived(self, childFD, data):
        if childFD == 1:
            self.outReceived(data)
        elif childFD == 2:
            self.errReceived(data)


    def outReceived(self, data):
        """
        Some data was received from stdout.
        """


    def errReceived(self, data):
        """
        Some data was received from stderr.
        """


    def childConnectionLost(self, childFD):
        if childFD == 0:
            self.inConnectionLost()
        elif childFD == 1:
            self.outConnectionLost()
        elif childFD == 2:
            self.errConnectionLost()


    def inConnectionLost(self):
        """
        This will be called when stdin is closed.
        """


    def outConnectionLost(self):
        """
        This will be called when stdout is closed.
        """


    def errConnectionLost(self):
        """
        This will be called when stderr is closed.
        """


    def processExited(self, reason):
        """
        This will be called when the subprocess exits.

        @type reason: L{twisted.python.failure.Failure}
        """


    def processEnded(self, reason):
        """
        Called when the child process exits and all file descriptors
        associated with it have been closed.

        @type reason: L{twisted.python.failure.Failure}
        """



class AbstractDatagramProtocol:
    """
    Abstract protocol for datagram-oriented transports, e.g. IP, ICMP, ARP, UDP.
    """

    transport = None
    numPorts = 0
    noisy = True

    def __getstate__(self):
        d = self.__dict__.copy()
        d['transport'] = None
        return d

    def doStart(self):
        """Make sure startProtocol is called.

        This will be called by makeConnection(), users should not call it.
        """
        if not self.numPorts:
            if self.noisy:
                log.msg("Starting protocol %s" % self)
            self.startProtocol()
        self.numPorts = self.numPorts + 1

    def doStop(self):
        """Make sure stopProtocol is called.

        This will be called by the port, users should not call it.
        """
        assert self.numPorts > 0
        self.numPorts = self.numPorts - 1
        self.transport = None
        if not self.numPorts:
            if self.noisy:
                log.msg("Stopping protocol %s" % self)
            self.stopProtocol()

    def startProtocol(self):
        """Called when a transport is connected to this protocol.

        Will only be called once, even if multiple ports are connected.
        """

    def stopProtocol(self):
        """Called when the transport is disconnected.

        Will only be called once, after all ports are disconnected.
        """

    def makeConnection(self, transport):
        """Make a connection to a transport and a server.

        This sets the 'transport' attribute of this DatagramProtocol, and calls the
        doStart() callback.
        """
        assert self.transport == None
        self.transport = transport
        self.doStart()

    def datagramReceived(self, datagram, addr):
        """Called when a datagram is received.

        @param datagram: the string received from the transport.
        @param addr: tuple of source of datagram.
        """


class DatagramProtocol(AbstractDatagramProtocol):
    """
    Protocol for datagram-oriented transport, e.g. UDP.

    @type transport: C{NoneType} or
        L{IUDPTransport<twisted.internet.interfaces.IUDPTransport>} provider
    @ivar transport: The transport with which this protocol is associated,
        if it is associated with one.
    """
    implements(interfaces.ILoggingContext)

    def logPrefix(self):
        """
        Return a prefix matching the class name, to identify log messages
        related to this protocol instance.
        """
        return self.__class__.__name__


    def connectionRefused(self):
        """Called due to error from write in connected mode.

        Note this is a result of ICMP message generated by *previous*
        write.
        """


class ConnectedDatagramProtocol(DatagramProtocol):
    """Protocol for connected datagram-oriented transport.

    No longer necessary for UDP.
    """

    def datagramReceived(self, datagram):
        """Called when a datagram is received.

        @param datagram: the string received from the transport.
        """

    def connectionFailed(self, failure):
        """Called if connecting failed.

        Usually this will be due to a DNS lookup failure.
        """



class FileWrapper:
    """A wrapper around a file-like object to make it behave as a Transport.

    This doesn't actually stream the file to the attached protocol,
    and is thus useful mainly as a utility for debugging protocols.
    """

    implements(interfaces.ITransport)

    closed = 0
    disconnecting = 0
    producer = None
    streamingProducer = 0

    def __init__(self, file):
        self.file = file

    def write(self, data):
        try:
            self.file.write(data)
        except:
            self.handleException()
        # self._checkProducer()

    def _checkProducer(self):
        # Cheating; this is called at "idle" times to allow producers to be
        # found and dealt with
        if self.producer:
            self.producer.resumeProducing()

    def registerProducer(self, producer, streaming):
        """From abstract.FileDescriptor
        """
        self.producer = producer
        self.streamingProducer = streaming
        if not streaming:
            producer.resumeProducing()

    def unregisterProducer(self):
        self.producer = None

    def stopConsuming(self):
        self.unregisterProducer()
        self.loseConnection()

    def writeSequence(self, iovec):
        self.write("".join(iovec))

    def loseConnection(self):
        self.closed = 1
        try:
            self.file.close()
        except (IOError, OSError):
            self.handleException()

    def getPeer(self):
        # XXX: According to ITransport, this should return an IAddress!
        return 'file', 'file'

    def getHost(self):
        # XXX: According to ITransport, this should return an IAddress!
        return 'file'

    def handleException(self):
        pass

    def resumeProducing(self):
        # Never sends data anyways
        pass

    def pauseProducing(self):
        # Never sends data anyways
        pass

    def stopProducing(self):
        self.loseConnection()


__all__ = ["Factory", "ClientFactory", "ReconnectingClientFactory", "connectionDone",
           "Protocol", "ProcessProtocol", "FileWrapper", "ServerFactory",
           "AbstractDatagramProtocol", "DatagramProtocol", "ConnectedDatagramProtocol",
           "ClientCreator"]